MSC-CSDS101A: Probabilistic Graphic Models


Coordinator:  Yannis HARALAMBOUS   

Presentation

Probabilistic graphical models combine probabilistic methods (in particular, the Bayesian approach, joint and conditional probabilities) and graph theory methods. One models a situation by considering every random variable as the vertex of a graph. Edges of the graph will represent, depending on the situation, either dependance (in the probabilistic sense) or causality, or simply mutual influence. Calculating the joint distribution gets much easier when using the underlying graph structure. From observed values for some random variables we can infer distributions for the nonobserved ones. Also, by using the notion of utility, we obtain influence diagrams, allowing us to take optimal decisions.

Prerequisites

Probability and graph theory basics

Duration: 20h


Content

1. Probabilistic reasoning
Basic probability notions, random variables, distributions, joint distribution, marginalization, Bayes formula, independence, conditional independence, probabilistic inference

2. Graph theory
Definitions, acyclicity, topological ordering, acyclic oriented graph, Markov blanket, clique, covering tree, Kruskal algorithm

3. Bayesian networks
Belief networks, the sprinkler example, v-structure, information propagation in a Bayesian network, d-connection, d-separation, Markov equivalence, immorality

4. Probabilistic graphical models
Potential, Markov networks, Gibbs distribution, separation in a Markov network, global and local Markov properties, Markov random fields, Hammersley-Clifford theorem, chain graphs, factor graphs, I-map, D-map, perfect map

5. Inference in trees
Markov chain, message passing, stationary distribution

6. Tree junction algorithm
Hugin propagation, consistence, running intersection property, junction tree, chordal graphs, perfect elimination order, Tarjan triangulation algorithm, Densmore Duke, Shafer-Shenoy propagation

7. Decision
Expected utility, decision tree, influence diagram, decision potential, probability potential, utility potential, strong junction tree, Markov decision process, Bellman equation, infinite horizon process

Organization

Examination

2h written exam, without documents

Scheduled activities

  • C1 (1h30)   Cours 1
  • PC/TP 1 (1h30)   PC/TP 1
  • C2 (1h30)   Cours 2
  • PC/TP2 (1h30)   PC/TP 2
  • C3 (1h30)   Cours 3
  • PC/TP3 (1h30)   PC/TP 3
  • C4 (1h30)   Cours 4
  • PC/TP4 (1h30)   PC/TP 4
  • C5 (1h30)   Cours 5
  • PC/TP5 (1h30)   PC/TP 5
  • C6 (1h30)   Cours 6
  • PC/TP6 (1h30)   PC/TP 6
  • Eval (2h)   Évaluation

Team


  C1
  1h30
  PC/TP 1
  1h30
  C2
  1h30
  PC/TP2
  1h30
  C3
  1h30
  PC/TP3
  1h30
  C4
  1h30
  PC/TP4
  1h30
  C5
  1h30
  PC/TP5
  1h30
  C6
  1h30
  PC/TP6
  1h30
  Eval
  2h
 Yannis HARALAMBOUS  x x x x x x x x x x x x x


Educational resource

Polycopié avec exercices

Recommended reading

David Barber, Bayesian Reasoning and Machine Learning, Cambridge University Press, 2012

Daphné Koller and Mir Friedman, Probabilistic Graphical Models: Principles and Techniques, The MIT Press, 2009


  Year 2018/2019
Last update: 10-JAN-18
Last validation:

IMT Atlantique
Campus de Brest
Technopôle Brest-Iroise
CS 83818
29238 Brest Cedex 3
France

Tél  +33 (0)2 29 00 11 11
Fax +33 (0)2 29 00 10 00